Daniel J. Teff and Kenneth G. Caulton*

Department of Chemistry, Indiana University, Bloomington, Indiana 47405-4001

Received June 6, 1997

Hydrolysis of $[Pb(O^{i}Pr_{2}]$ using selected stoichiometries yields $[Pb_{4}O(i^{i}Pr)_{6}]$ or $[Pb_{6}O_{4}(O^{i}Pr)_{4}]$, and stoichiometric $[Pb(O^{i}Pr)_{2}]$ converts $[Pb_{6}O_{4}(O^{i}Pr)_{4}]$ to $[Pb_{4}O(O^{i}Pr)_{6}]$. $[Pb_{4}O(O^{i}Pr)_{6}]$ does not have the T_{d} structure of its O'Bu analogue. Reaction of electrophilic $M(O^{i}Pr)_{4}$ (M = Ti or Zr) with $Pb_{4}O(O^{i}Pr)_{6}$ yields $Pb_{3}MO(O^{i}Pr)_{8}$, by "displacement" of $[Pb(O^{i}Pr)_{2}]$. However, reaction of the seemingly more accessible oxide in $Pb_{6}O_{4}(O^{i}Pr)_{4}$ with $M(O^{i}Pr)_{4}$ gives $Pb_{3}MO(O^{i}Pr)_{8}$, together with other metal oxo alkoxides.

Introduction

Various routes have been reported to yield Pb oxo alkoxides $(Pb_aO_b(OR)_c)$.¹⁻⁵ Some of the routes studied involve the anodic oxidation of Pb in the presence of HOR,¹ the reaction of Pb- $(OAc)_2$ with NaOR,^{3,4} or even the thermolysis of Pb(OR)₂ in refluxing solvent or during sublimation.²⁻⁴ While there are many routes which can lead to the same products, some of these routes involve many steps, may not be reproducible, require tedious workup, or give unattractive yields. Further, the use of alkoxide/acetate or alkoxide/halide metathesis reactions may lead to mixed-metal (e.g., $Na_aPb_bO_c(OR)_d$) or mixed-ligand (e.g., $Pb_aO_b(OR)_c(X)_d$, X = OAc, Br, F) products.¹ We hoped that the most direct route to a high yield of Pb oxo alkoxide products would be the controlled hydrolysis of Pb(OR)₂, requiring only pure Pb(OR)₂, stoichiometric water, a polar solvent such as THF (for miscibility with water), and an efficient means of purification (i.e., crystallization). This method also serves as a convenient way to introduce a ¹⁷O label (i.e., oxide) into the molecule to use as a spin-active $(I = \frac{5}{2})$ NMR probe.

We have shown⁵ that this method is useful in the synthesis of both homometallic (Pb₄O(O'Bu)₆ and Pb₆O₄(O'Bu)₄) and heterometallic alkoxides (Pb₃ZrO(O'Bu)₈) at room temperature. Since our interests involve the systematic synthesis of homoand heterometallic alkoxide systems having smaller and more reactive alkoxides, we decided to extend the controlledhydrolysis pathway to the synthesis of alkoxides of type Pb_aM^{IV}_bO_c(OⁱPr)_d (M^{IV} = Zr, Ti). Here we report rational, highyield syntheses for Pb₄O(OⁱPr)₆, Pb₆O₄(OⁱPr)₄, and Pb₃ZrO-(OⁱPr)₈ and their characterization, including extensive multinuclear NMR data. This permits some systematic conclusions about the influence of M and R in Pb₃MO(OR)₈ species on their structure and dynamics. We also include data for Pb₃TiO-(OⁱPr)₈, which is a new Pb/Ti oxoalkoxide with a metal ratio different from that of Pb₂Ti₂O(OⁱPr)₁₀.⁶

Experimental Section

All manipulations were carried out under a dry nitrogen or argon atmosphere using oven-dried glassware. Solvents (and HOⁱPr) were rigorously dried by their fresh distillation under argon from appropriate drying agents and storage under nitrogen over activated molecular sieves. Pb[N(SiMe₃)₂]₂⁷ was prepared according to the literature method. [Pb(OⁱPr)₂] was prepared according to a modification of a literature procedure.8 Synthesis at -40 °C in pentane afforded a white, flocculant precipitate, which was washed three times with pentane and dried for 12 h under dynamic vacuum (10⁻² Torr). [Zr(OⁱPr)₄(HOⁱPr)]₂ was purchased from Aldrich and recrystallized from HOⁱPr/pentane; all HOⁱPr can be removed from the solid alcohol adduct under dynamic vacuum (1 h at 100 °C) to leave [Zr(OⁱPr)₄].⁹ Ti(OⁱPr)₄ was purchased from Aldrich and used as received. ¹⁷O-enriched (40 atom %) water was obtained from Iso-Yeda Corp., Rehovot, Israel. ¹H and ¹³C NMR spectra were recorded on a 300 MHz Varian Gemini 2000 spectrometer at 300 and 75.6 MHz, respectively. ¹⁷O NMR and ²⁰⁷Pb NMR spectra were recorded on a Varian Unity Inova 400 MHz spectrometer at 54 and 84 MHz, respectively. Spectra were recorded in C₆D₅CD₃ or CDCl₃. ¹H spectra were referenced to the protio impurity resonance of the deuterated solvent (2.09 ppm for the upfield resonance of $C_6D_5CD_3$ and 7.24 ppm for $CDCl_3$), and ^{13}C spectra were referenced to the resonance of the deuterated solvent (20.4 ppm for the upfield resonance of C₆D₅CD₃ and 77.0 ppm for CDCl₃). ¹⁷O spectra were referenced to an external sample of 17O-enriched (5 atom %) H₂O (neat, 0.0 ppm), and ²⁰⁷Pb spectra were referenced to an external sample of neat PbEt₄ (73.3 ppm).¹⁰ Elemental analyses were performed in-house on a Perkin-Elmer 2400 series II CHNS/O analyzer. Thermogravimetric analyses (TGA) were recorded on a TA Instruments 951 thermogravimetric analyzer at ambient pressure in a He-filled glovebox. All measurements were run at 5 °C/min from ambient temperature to 700 °C with a 40 mL/min He purge of the sample chamber.

Synthesis of Pb₄¹⁷O(OⁱPr)₆ (Eq 1). Pb[N(SiMe₃)₂]₂ (6.00 g, 11.4 mmol) was dissolved in 30 mL of THF, and neat HOⁱPr (2.0 mL, 26 mmol) was added dropwise to this solution to give a white precipitate in a colorless solution. The reaction mixture was heated to reflux, and ¹⁷OH₂ (55.5 μ L, 2.98 mmol) in 10 mL of THF was added dropwise to

- (6) Daniele, S.; Papiernik, R.; Hubert-Pfalzgraf, L. G.; Jagner, S.; Håkansson, M. Inorg. Chem. 1995, 34, 628.
- (7) Harris, D. H.; Lappert, M. F. J. Chem. Soc., Chem. Commun. 1974, 895.
- (8) Goel, S. C.; Chiang, M. Y.; Buhro, W. E. Inorg. Chem. 1990, 29, 4640.
- (9) Xue, Z.; Vaartstra, B. A.; Caulton, K. G.; Chisholm, M. H.; Jones, D. L. Eur. J. Solid State Inorg. Chem. 1992, 29, 213.
- (10) Kennedy, J. D.; McFarlane, W.; Pyne, G. S. J. Chem. Soc., Dalton Trans. 1977, 2332.

Yanovskii, A. I.; Turova, N. Ya.; Turevskaya, E. P.; Struchkov, Yu. T. Koord. Khim. (Engl. Transl.) 1982, 8, 76.

⁽²⁾ Gaffney, C.; Harrison, P. G.; King, T. J. J. Chem. Soc., Chem. Commun. 1980, 1251.

⁽³⁾ Papiernik, R.; Hubert-Pfalzgraf, L. G.; Massiani, M.-C. Inorg. Chim. Acta 1989, 165, 1.

⁽⁴⁾ Papiernik, R.; Hubert-Pfalzgraf, L. G.; Massiani, M.-C. Polyhedron 1991, 10, 1657.

⁽⁵⁾ Teff, D. J.; Huffman, J. C.; Caulton, K. G. J. Am. Chem. Soc. 1996, 118, 4030.

give a clear, colorless solution. After a 1 h reflux, the solvent was removed in vacuo and the resulting cream-colored solid was suspended in a minimal amount of HOiPr. The solid dissolved upon heating, and colorless, plate-like crystals were grown by allowing the hot solution to cool to room temperature. Two crops of crystals gave 2.68 g (79 %)¹¹ of product, which can be sublimed at 105 °C and 10⁻² Torr. ¹H NMR (C₆D₅CD₃, 25 °C): δ 4.95 (br septet), 1.30 (d); (C₆D₅CD₃, -30 °C) δ 5.03 (br m, 2 H), 4.79 (br, 1 H), 1.32 (br septet, 18 H); (C₆D₅-CD₃, -90 °C) δ 5.08 (br septet, 2 H), 4.80 (septet, 1 H), 1.41 (d, 6 H), 1.36 (br d, 6 H), 1.31 (d, 6 H); (C₆D₅CD₃, -100 °C) δ 5.19 (br, 1 H), 5.10 (br septet, 1 H), 4.81 (septet, 1 H), 1.41 (br, 12 H), 1.32 (br d, 6 H). ¹³C{¹H} NMR (C₆D₅CD₃, 25 °C): δ 65.2 (s, OCH(CH₃)₂), 29.6 (s, OCH(CH₃)₂). ¹⁷O NMR (C₆D₅CD₃, 95 °C): δ 244.4 (br, ν ^{1/2} = 317 Hz); (C₆D₅CD₃, 25 °C) δ 243.3 (v br, $\nu^{1/2}$ = 705 Hz); (C₆D₅CD₃, -30 °C) δ 247.4 (s, $\nu^{1/2} = 12$ Hz; d satellites, ${}^{1}J_{Pb-O} = 361$ Hz; d satellites, ${}^{1}J_{Pb-O} = 405$ Hz; t satellites, ${}^{1}J_{Pb-O} = 368$ Hz; t satellites, ${}^{1}J_{\text{Pb-O}} = 405 \text{ Hz}$), 234.5 (br, $\nu^{1/2} = 462 \text{ Hz}$). ${}^{207}\text{Pb} \text{ NMR} (C_6\text{D}_5\text{CD}_3, 100 \text{ C}_6\text{D}_5\text{CD}_3)$ 25 °C): δ 1368 (br, $\nu^{1/2}$ = 158 Hz), 1015 (br, $\nu^{1/2}$ = 342 Hz), 650 (br, $v^{1/2} = 321$ Hz); (C₆D₅CD₃, -30 °C) δ 1356 (s, $v^{1/2} = 52$ Hz; d satellites, $J_{\text{Pb-Pb}} = 260 \text{ Hz}$), 996 (s, $v^{1/2} = 87 \text{ Hz}$), 637 (s, $v^{1/2} = 81 \text{ Hz}$; d satellites, $J_{\rm Pb-Pb} = 260$ Hz). MS (EI, 15 eV): m/z^+ Pb(OⁱPr)⁺ (100), Pb₂¹⁷O- $(O^{i}Pr)^{+}$ (36), $Pb_{3}^{17}O(O^{i}Pr)_{3}^{+}$ (50), $Pb_{4}^{17}O(O^{i}Pr)_{5}^{+}$ (32). Anal. Calcd for PbO₇C₁₈H₄₂: C, 18.02; H, 3.53. Found: C, 18.02; H, 3.39.

Synthesis of Pb₆¹⁷O₄(OⁱPr)₄ (Eq 2). Pb[N(SiMe₃)₂]₂ (2.00 g, 3.79 mmol) was dissolved in 30 mL of THF, and neat HOⁱPr (0.8 mL, 10 mmol) was added dropwise to this solution to give a white precipitate in a colorless solution. The reaction mixture was heated to reflux, and ¹⁷OH₂ (16.5 μ L, 2.56 mmol) in 10 mL of THF was added dropwise to give a clear, colorless solution. After a 1 h reflux, the solution was concentrated until a precipitate formed. The solid dissolved upon heating, and colorless, octagon-shaped crystals were grown by allowing the hot solution to cool to room temperature. Three crops of crystals gave $0.800 \text{ g} (85\%)^{11}$ of product. Decomposition to a yellow powder which eventually turned brown resulted upon attempted sublimation at 110 °C and 10⁻² Torr. ¹H NMR (CDCl₃, 25 °C): δ 4.74 (septet), 0.99 (d). ¹³C{¹H} NMR (CDCl₃, 25 °C): δ 62.2 (s, OCH(CH₃)₂), 24.3 (s, OCH(CH₃)₂). ¹⁷O NMR (CDCl₃, 25 °C): δ 240.5 (br m, ¹² ¹J_{Pb-O} = 440 Hz). ²⁰⁷Pb NMR (CDCl₃, 25 °C): δ 1967 (s). MS (EI, 15 eV): m/z^+ Pb₄¹⁷O₃(OⁱPr)⁺ (30), Pb₅¹⁷O₄(OⁱPr)⁺ (22), Pb₆¹⁷O₄(OⁱPr)₃⁺ (100). Anal. Calcd for Pb₆O₈C₁₂H₂₈: C, 9.32; H, 1.83. Found: C, 9.41; H, 1.84. X-ray analysis (-165 °C): tetragonal cell, a = b =11.786(4) Å; c = 17.652(5) Å.

Synthesis of Pb₃Zr¹⁷O(OⁱPr)₈ (Method 1) (Eq 3). For a one-pot synthesis, Pb[N(SiMe₃)₂]₂ (3.00 g, 5.68 mmol) was dissolved in 20 mL of Et₂O and cooled to 0 °C. Neat HOⁱPr (1.0 mL, 13 mmol) was added dropwise to this solution to give a white precipitate. The solvent was removed in vacuo, and the precipitate was dried under dynamic vacuum for 2 h at 40 °C. To the powdery solid was added 35 mL of THF, and the suspension was heated to reflux. While some solid remained undissolved in the refluxing THF, this quickly went into solution upon dropwise addition of ${}^{17}\text{OH}_2$ (35.8 μ L, 1.92 mmol) in 10 mL of THF. The resulting solution was refluxed for 5 min, and [Zr-(OⁱPr)₄(HOⁱPr)]₂ (0.734 g, 0.947 mmol) in 20 mL of THF was added. After a 10 min reflux, the solvent was removed in vacuo to give a waxy material, which was transferred to a sublimation apparatus. There, it sublimed at 125 °C and 10⁻² Torr to leave a waxy, crystalline deposit (1.64 g, 71%) on a 0 °C cold finger.¹³ ¹H NMR ($C_6D_5CD_3$, -20 °C): δ 5.09 (septet, 3 H), 4.80 (septet, 4 H), 4.61 (septet, 1 H), 1.45 (d, 6 H), 1.41 (d, 24 H), 1.18 (d, 18 H); (C₆D₅CD₃, 10 °C) δ 5.09 (septet, 3 H), 4.78 (br septet, 4 H), 4.58 (br, 1 H), 1.38 (d, 30 H), 1.18 (d, 18 H); (C₆D₅CD₃, 30 °C) δ 5.09 (br, 3 H), 4.74 (br, 5 H), 1.35 (br d, 30 H), 1.18 (br, 18 H); (C₆D₅CD₃, 70 °C) δ 4.81 (v br, 8 H), 1.27 (br, 48 H); (C₆D₅CD₃, 90 °C) δ 4.84 (br, 8 H), 1.27 (d, 48 H). ¹³C{¹H} NMR (C₆D₅CD₃, 25 °C): δ 70.2 (v br, OCH(CH₃)₂), 68.2 (br s, OCH(CH₃)₂), 65.2 (s, OCH(CH₃)₂), 29.6 (s, OCH(CH₃)₂), 28.4 (br s, OCH(CH₃)₂). ¹⁷O NMR (C₆D₅CD₃, 65 °C): δ satellite intensity (calcd; obsd)¹⁴ 235.6 (2.9; 5.3), 231.5 (20.5; 20.8), 227.4 (53.0; 50.9) ($v^{1/2} = 93$ Hz; ¹ $J_{Pb-O} = 428$ Hz), 223.5 (20.5; 18.5), 219.8 (2.9; 4.5). ²⁰⁷Pb NMR (C₆D₅-CD₃, 25 °C): δ 986.5 (s, 2 Pb), 986.1 (s, 1 Pb); (C₆D₅CD₃, 50 °C) δ 1000 (s). Anal. Calcd for Pb₃ZrO₉C₂₄H₅₆: C, 23.98; H, 4.70. Found: C, 23.93; H, 4.62. MS (EI, 15 eV): m/z^+ Pb(OⁱPr)⁺ (25), Pb₂¹⁷O(OⁱPr)⁺ (58), Pb₃¹⁷O(OⁱPr)₃⁺ (100), Pb₃Zr¹⁷O(OⁱPr)₇⁺ (80).

Synthesis of Pb₃Zr¹⁷O(OⁱPr)₈ (Method 2) (Eq 7). A solution of Pb₄¹⁷O(OⁱPr)₆ (0.0900 g, 75.0 μmol) in 0.25 mL of C₆D₅CD₃ was added to a solution of [Zr(OⁱPr)₄] (0.0246 g, 75.1 μmol) in 0.25 mL of C₆D₅-CD₃. The resulting solution was agitated for 3 min and then placed in an NMR tube. After the solution was heated to reflux for 3 min, a white precipitate formed. ¹H NMR (C₆D₅CD₃, 25 °C): δ 5.08 (br, 3 H), 4.76 (br, 5 H), 1.37 (d, 30 H), 1.21 (br d, 18 H). ¹³C{¹H} NMR (C₆D₅CD₃, 25 °C): δ 70.2 (v br, OCH(CH₃)₂), 68.2 (br s, OCH(CH₃)₂), 65.2 (s, OCH(CH₃)₂), 29.7 (s, OCH(CH₃)₂), 28.4 (br s, OCH(CH₃)₂). ¹⁷O NMR (C₆D₅CD₃, 65 °C): δ 226.4 (multiplet¹⁵). ²⁰⁷Pb NMR (C₆D₅-CD₃, 25 °C): δ 980.9 (s, 2 Pb), 980.5 (s, 1 Pb).

Synthesis of Pb₃Ti¹⁷O(OⁱPr)₈ (Method 1) (Eq 5). A suspension of [Pb(OⁱPr)₂] (1.787 g, 5.49 mmol) in 30 mL of THF was warmed to reflux, and ${}^{17}\text{OH}_2$ (31.9 μ L, 1.92 mmol) in 10 mL of THF was rapidly added, resulting in a clear, colorless solution. After a 5 min reflux, Ti(OⁱPr)₄ (0.520 g, 1.83 mmol) in 20 mL of THF was added. The solution was refluxed for an additional 10 min, and the solvent was removed in vacuo, leaving a waxy material. After the wax was dissolved in pentane and the solution was filtered, the solvent was removed in vacuo and 1.813 g (86%) of light-brown wax remained. Attempted vacuum sublimation resulted in partial decomposition of the compound. At 100 °C and 10⁻² Torr, equimolar Pb₃Ti¹⁷O(OⁱPr)₈ and $Ti(O^iPr)_4$ condensed on a 0 $^\circ C$ cold finger apparatus (^1H NMR evidence). ¹H NMR (C₆D₅CD₃, 25 °C): δ 5.06 (septet), 1.29 (d); (C₆D₅CD₃, -70 °C): δ 5.13 (septet, 7 H), 4.93 (septet, 1 H), 1.42 (d, 6 H), 1.33 (d, 42 H); (C₆D₅CD₃, -90 °C) δ 5.15 (septet, 7 H), 4.95 (septet, 1 H), 1.45 (d, 6 H), 1.36 (br, 42 H); (C₆D₅CD₃, -100 °C) δ 5.16 (br septet, 7 H), 4.96 (septet, 1 H), 1.46 (d, 6 H), 1.43 (br, 24 H), 1.27 (br, 18 H). ¹³C{¹H} NMR (C₆D₅CD₃, 25 °C): δ 68.6 (br, OCH-(CH₃)₂), 28.5 (br, OCH(CH₃)₂). ¹⁷O NMR (C₆D₅CD₃, 65 °C): δ satellite intensity (calcd; obsd)14 260.9 (2.9; 3.3), 257.0 (20.5; 19.6), 252.9 (53.0; 55.0) ($\nu^{1/2}$ = 68 Hz; ${}^{1}J_{Pb-O}$ = 442 Hz), 248.9 (20.5; 19.1), 244.6 (2.9; 3.0). ²⁰⁷Pb NMR (C₆D₅CD₃, 25 °C): δ 882.1 (s, 2 Pb), 881.7 (s, 1 Pb). MS (EI, 15 eV): m/z^+ Ti(OⁱPr)₃⁺ (92), Pb(OⁱPr)⁺ (100), $Pb_2{}^{17}O(O^{i}Pr)^+$ (18), $Pb_3{}^{17}O(O^{i}Pr)_3^+$ (27), $Pb_3Ti^{17}O(O^{i}Pr)_8^+$ (19). Anal. Calcd for Pb3TiO9C24H56: C, 24.88; H, 4.87. Found: C, 25.09; H. 4.99.

Synthesis of Pb₃Ti¹⁷O(OⁱPr)₈ (Method 2) (Eq 9). A white precipitate formed immediately upon mixing of a solution of Pb₄¹⁷O-(OⁱPr)₆ (0.0900 g, 75.0 μ mol) in 0.25 mL of C₆D₅CD₃ with a solution of Ti(OⁱPr)₄ (0.0213 g, 74.9 μ mol) in 0.25 mL of C₆D₅CD₃. The resulting suspension was transferred to an NMR tube. ¹H NMR (C₆D₅CD₃, 25 °C): δ 5.07 (septet), 1.29 (d). ¹³C{¹H} NMR (C₆D₅CD₃, 25 °C): δ 68.5 (br, OCH(CH₃)₂), 28.5 (br, OCH(CH₃)₂). ¹⁷O NMR (C₆D₅CD₃, 65 °C): δ 253.0 (multiplet¹⁵). ²⁰⁷Pb NMR (C₆D₅CD₃, 25 °C): δ 882.0 (s, 2 Pb), 881.6 (s, 1 Pb).

Attempted Synthesis of Pb₂Ti₂¹⁷O(OⁱPr)₁₀ via Hydrolysis (Eq 11). A solution of ¹⁷OH₂ (40.2 μ L, 2.42 mmol) in 15 mL of THF was added to a refluxing suspension of [Pb(OⁱPr)₂] (1.50 g, 4.61 mmol) in 30 mL of THF. After a 5 min reflux, Ti(OⁱPr)₄ (1.31 g, 4.61 mmol) in 20 mL of THF was added. The solution was refluxed for an additional 4 h, and the solvent was removed in vacuo, leaving a precipitate suspended in an oil. A portion of the resulting material was analyzed. ²⁰⁷Pb NMR

⁽¹¹⁾ The isolated yield suffers somewhat due to the fairly high solubility of the compound in the crystallization solvent.

⁽¹²⁾ Only three of the expected seven lines were detected due to the broadness of the lines. Chemical shifts, coupling constants, and intensities of the satellites could not be accurately determined.

⁽¹³⁾ During sublimation of this compound, it is necessary to chill the cold-finger apparatus to near 0 °C for the vaporized material to condense as a waxy substance. Otherwise, it will simply reflux as a viscous liquid.

⁽¹⁴⁾ Satellite intensities are calculated for ¹⁷O coupling to three "equivalent" Pb atoms at natural abundance. Only five of the expected seven lines could be resolved due to limited signal-to-noise.

⁽¹⁵⁾ The multiplicity, coupling constants, and intensities of the satellites duplicate those cited above. Only the chemical shift of the central line is shown here.

⁽¹⁶⁾ Papiernik, R.; Hubert-Pfalzgraf, L. G.; Chaput, F. J. Non-Cryst. Solids 1992, 147, 36.

(C₆D₅CD₃, 25 °C): δ 882.7 and 882.3 (s; Pb₃Ti¹⁷O(OⁱPr)₈), 178.9 (s; Pb₂Ti₂¹⁷O(OⁱPr)₁₀). ¹⁷O NMR(C₆D₅CD₃, 65 °C): δ 554.5 (s, Ti₃¹⁷O-(OⁱPr)₁₀); satellite intensity (calcd; obsd)¹⁷ 333.7 (17.2; 17.2), 331.2 (63.1; 65.6) ($\nu^{1/2} = 16$ Hz; ¹J_{Pb-O} = 272 Hz; Pb₂Ti₂¹⁷O(OⁱPr)₁₀), 328.7 (17.2; 17.2); 295 (v br; Ti(OⁱPr)₄), 252.9 (multiplet; ¹⁵ Pb₃Ti¹⁷O(OⁱPr)₈).

Conversion of Pb₆¹⁷O₄(OⁱPr)₄ to Pb₄¹⁷O(OⁱPr)₆ (Eq 15). [Pb(OⁱPr)₂] (0.0800 g, 246 μ mol) and Pb₆¹⁷O₄(OⁱPr)₄ (0.0380 g, 24.6 μ mol) were washed into an NMR tube with 0.5 mL of C₆D₅CD₃. Heating the resulting suspension to reflux for 5 min gave a clear solution. ¹H NMR (C₆D₅CD₃, 25 °C): δ 5.00 (br), 1.29 (d). ¹³C{¹H} NMR (C₆D₅CD₃, 25 °C): δ 65.2 (s, OCH(CH₃)₂), 29.6 (s, OCH(CH₃)₂).

Reaction of Pb₆¹⁷**O**₄(**O**ⁱ**Pr**)₄ with [**Zr**(**O**ⁱ**Pr**)₄] (**Eq 8**). Pb₆¹⁷**O**₄(**O**ⁱ**Pr**)₄ (0.0400 g, 25.9 μ mol) was washed into an NMR tube with a solution of [**Zr**(**O**ⁱ**Pr**)₄] (0.0763 g, 233 μ mol) in 0.5 mL of C₆D₅CD₃. Heating the resulting suspension to reflux for 3 min gave a clear solution. ²⁰⁷Pb NMR (C₆D₅CD₃, 25 °C): δ 981.5 (s, 2 Pb), 981.1 (s, 1 Pb). ¹⁷O NMR (C₆D₅CD₃, 65 °C): δ 411 (s; **Zr**₃¹⁷O(**O**ⁱ**Pr**)₁₀), 272 (v br; **Zr**(**O**ⁱ**Pr**)₄), 263 (multiplet; ¹⁵ Pb₃**Zr**¹⁷O(**O**ⁱ**Pr**)₈).

Reaction of Pb₆¹⁷O₄(**O**ⁱ**Pr**)₄ with Ti(**O**ⁱ**Pr**)₄ (**Eq 13**). Pb₆¹⁷O₄(**O**ⁱ**P**r)₄ (0.0500 g, 32.3 μ mol) was washed into an NMR tube with a solution of Ti(**O**ⁱ**P**r)₄ (0.0828 g, 291 μ mol) in 0.5 mL of C₆D₅CD₃. Agitating the resulting suspension at 25 °C for 3 min gave a clear solution. ²⁰⁷Pb NMR(C₆D₅CD₃, 25 °C): δ 884.4 and 884.0 (s; Pb₃Ti¹⁷O(**O**ⁱ**P**r)₈), 156.4 (s; Pb₂Ti₂¹⁷O(**O**ⁱ**P**r)₁₀). ¹⁷O NMR (C₆D₅CD₃, 65 °C): δ 554 (s; Ti₃¹⁷O(**O**ⁱ**P**r)₁₀), 334.5 (multiplet;¹⁵ Pb₂Ti₂¹⁷O(**O**ⁱ**P**r)₁₀), 295 (v br; Ti-(**O**ⁱ**P**r)₄), 253.3 (multiplet;¹⁵ Pb₃Ti¹⁷O(**O**ⁱ**P**r)₈).

Reaction of [Pb(O'Pr)₂] with ¹⁷OH₂ (3:1) (Eq 4). HO'Pr (0.32 mL, 4.19 mmol) was added dropwise to a solution of Pb[N(SiMe₃)₂]₂ (1.00 g, 1.89 mmol) in 20 mL of THF, giving a white precipitate. The solution was warmed to reflux, and a solution of H₂O (11.9 μ L, 0.661 mmol) in 10 mL of THF was added. The resulting clear solution was refluxed for another 5 min, and then the solvent was removed in vacuo. Toluene was added to the solid, and the solution was cannula-transferred to another flask. The solvent was removed in vacuo, and a portion of the solid material was analyzed. ¹H NMR (C₆D₅CD₃, 25 °C): δ 4.92 (br; Pb₄¹⁷O(O'Pr)₆), 4.74 (br; Pb₆¹⁷O₄(O'Pr)₄), 1.29 (d; Pb₄¹⁷O(O'Pr)₆), 1.06 (br d; Pb₆¹⁷O₄(O'Pr)₄). The solid that did not dissolve in toluene was dried in vacuo, and a portion of it was analyzed. ¹H NMR (CDCl₃, 25 °C): δ 4.76 (septet; Pb₆¹⁷O₄(O'Pr)₄), 1.03 (d; Pb₆¹⁷O₄(O'Pr)₄).

Reaction of [Pb(O'Pr)₂] with ¹⁷OH₂ (2:1) (Eq 12). HO'Pr (0.32 mL, 4.19 mmol) was added dropwise to a solution of Pb[N(SiMe₃)₂]₂ (1.00 g, 1.89 mmol) in 20 mL of THF, giving a white precipitate. The solution was warmed to reflux, and a solution of H₂O (17.9 μ L, 0.998 mmol) in 10 mL of THF was added. The resulting clear solution was refluxed for another 5 min, and then the solvent was removed in vacuo. A portion of the resulting material was analyzed. ¹H NMR (C₆D₅-CD₃, 25 °C): δ 4.90 (br; Pb₄¹⁷O(O'Pr)₆), 4.73 (br; Pb₆¹⁷O₄(O'Pr)₄), 1.29 (d; Pb₄¹⁷O(O'Pr)₆), 1.06 (br d; Pb₆¹⁷O₄(O'Pr)₄). The solid which did not dissolve in toluene was dried in vacuo, and a portion of it was analyzed. ¹H NMR (CDCl₃, 25 °C): δ 4.75 (septet; Pb₆¹⁷O₄(O'Pr)₄), 1.02 (d; Pb₆¹⁷O₄(O'Pr)₄).

Results

Pb₄¹⁷**O**(**O**ⁱ**Pr**)₆. The synthesis of Pb₄O(**O**ⁱ**P**r)₆ proceeds by the addition of stoichiometric (1:4) water to in situ formed [Pb- $(O^{i}Pr)_{2}$] in refluxing THF (eq 1). The presence of HN(SiMe₃)₂,

$$4[Pb(O^{i}Pr)_{2}] + {}^{17}OH_{2} \rightarrow Pb_{4}{}^{17}O(O^{i}Pr)_{6} + 2HO^{i}Pr \quad (1)$$

a Brønsted-basic coproduct during the synthesis of $[Pb(O^iPr)_2]$, has no effect on the hydrolysis. The resulting compound can be crystallized in the form of plates by slowly cooling a hot, concentrated HOⁱPr solution to room temperature. The compound is *very* soluble in many aliphatic solvents and can be sublimed intact at 105 °C and 10^{-2} Torr. Its ¹H and ¹³C{¹H} spectra at 25 °C in C₆D₅CD₃ are deceptively simple and suggest

Figure 1. Stacked plot of 300 MHz ¹H NMR spectra of $Pb_4^{17}O(O^{i}Pr)_6$ in d_8 -toluene at 25 °C (lower), -90 °C (middle), and -100 °C (upper). The signal at 2.1 ppm is due to residual toluene methyl protons.

that there is only one chemical environment for the alkoxides and oxo functionality. This could easily lead to the conclusion that the solution structure is of the type found for Pb₄O(O^tBu)₆,³⁻⁵ (**I**) which, due to its T_d symmetry, has six equivalent alkoxides and four equivalent metals. It is only under further examination of the molecule by ²⁰⁷Pb NMR and variable-temperature multinuclear NMR that it becomes apparent that the structure is different.

At 25 °C, its ¹H NMR spectrum shows a broadened methine signal and sharp methyl doublet (Figure 1). Upon cooling to -30 °C, the methine region shows two broad lines integrating to 2:1 whereas the methyl region has one broad peak. Further cooling to -90 °C shows no change in the methine region whereas the methyl region shows three equal-intensity doublets. At -100 °C, three equal-intensity multiplets are found in the methine region. The room temperature ${}^{13}C{}^{1}H$ NMR spectrum also has two equal-intensity peaks in the methine and two in the methyl regions. The ²⁰⁷Pb NMR spectrum at 25 °C has three broad peaks integrating to approximately 1:4:3, but these peaks completely broaden into the baseline on warming to 100 °C. At -30 °C (Figure 2), doublet satellites were detected at two (the signals with intensities of 1 and 3) of the three signals. The signal with the lowest intensity appears to have two more outer satellites that are barely detectable due to signal-to-noise limitations. This could indicate that this Pb couples to three equivalent Pb atoms (based on satellite intensity) at natural abundance. Further, the other signal appears to only couple to one Pb atom (based on satellite intensity). Thus, the signal of intensity 1 shows coupling to three Pb atoms, and the signal of intensity 3 shows coupling to one Pb atom. The relative intensities of all three signals in the spectrum are unchanged on further cooling of the sample. It is therefore possible that all signals are due to one species in solution. This is somewhat hard to support with the ¹⁷O NMR evidence found. At 25 °C (and above), the ¹⁷O NMR spectrum has only one broad signal (Figure 3). However, the -30 °C spectrum shows decoalesence into a set of sharp, complex multiplets centered around one line

⁽¹⁷⁾ Satellite intensities are calculated for ¹⁷O coupling to two equivalent Pb atoms at natural abundance.

Figure 2. ²⁰⁷Pb NMR spectrum (84 MHz) of Pb₄O(OⁱPr)₆ in d_8 -toluene at -30 °C. Insets (above, left and right) show satellites due to Pb/Pb coupling.

Figure 3. ¹⁷O NMR spectra (54 MHz) of Pb₄¹⁷O(OⁱPr)₆ in d_8 -toluene at 25 °C (left) and -30 °C (right).

(247 ppm), in addition to a broad signal (234 ppm). The 247 ppm multiplet shows (at least) three different coupling constants with doublet and triplet satellites of differing intensities. These satellites, to a certain extent, are consistent with the coupling found by ²⁰⁷Pb NMR where one unique Pb couples to three equivalent Pb atoms. However, the broad peak in the ¹⁷O NMR spectrum indicates either a molecule with low symmetry about the μ_x -O or the occurrence of a fluxional process. At -100 °C, the broad peak disappears into the baseline while the sharp peak broadens only slightly. While a comprehensive explanation of these spectra is lacking, the ¹H, ²⁰⁷Pb, and ¹⁷O NMR spectra at -30 °C are certainly not consistent with structure **I**.

The mass spectrum of $Pb_4^{17}O(O^iPr)_6$ shows $Pb_4^{17}O(O^iPr)_5^+$, $Pb(O^iPr)^+$, $Pb_2^{17}O(O^iPr)^+$, and $Pb_3^{17}O(O^iPr)_3^+$. Higher oligomers of $[Pb_4^{17}O(O^iPr)_6]_n$ were not detected in the *gas phase*.

Pb₆¹⁷**O**₄(**O**ⁱ**Pr**)₄. The controlled hydrolysis of in situ formed [Pb(OⁱPr)₂] in refluxing THF (eq 2) proceeds by addition of stoichiometric (6:4) ¹⁷OH₂ to give Pb₆¹⁷O₄(OⁱPr)₄. This species

$$6[Pb(O^{i}Pr)_{2}] + 4^{17}OH_{2} \rightarrow Pb_{6}^{17}O_{4}(O^{i}Pr)_{4} + 8HO^{i}Pr$$
 (2)

begins to crystallize upon cooling of the THF solution to room temperature. After the solution is concentrated and warmed to dissolve the precipitate, high-quality crystals form upon cooling of the solution slowly to room temperature. This species is poorly soluble in nearly all solvents at room temperature except CHCl₃, in which it is very soluble. Its ¹H, ¹³C{¹H}, ¹⁷O, and ²⁰⁷Pb NMR spectra in CDCl₃ each show only one chemical environment and are consistent with the general Pb₆O₄(OR)₄ structure type (**II**).¹ The *T_d* symmetry of the molecule causes it to have six equivalent metals, four equivalent alkoxides, and four equivalent oxo groups.

Both ¹H and ¹³C{¹H} NMR show only one environment in the methyl and also in the methine region. Its ²⁰⁷Pb NMR chemical shift (1967 ppm) is approximately the same as that of Pb₆O₄(O'Bu)₄ (2015 ppm),⁵ and its ¹⁷O NMR spectrum displays a splitting pattern (the same as found for the O'Bu analogue) which is indicative of three Pb atoms (at natural abundance) coupling to one oxygen. Further, the broadness of the lines shows a somewhat symmetric (C_{3v}) electron density distribution about the oxo functionality. X-ray analysis at -174 °C gave a unit cell which was nearly the same as that found previously,¹ but the cell was slightly smaller, due to the temperature difference.

Although attempted sublimation at 110 °C and 10^{-2} Torr resulted in decomposition to an intractable brown solid, the mass spectrum (approximately 10^{-5} Torr) showed Pb₆¹⁷O₄(OⁱPr)₃⁺, Pb₅¹⁷O₄(OⁱPr)⁺, and Pb₄¹⁷O₃(OⁱPr)⁺.

Pb₃Zr¹⁷O(OⁱPr)₈. The synthesis of Pb₃Zr¹⁷O(OⁱPr)₈ first involves the reaction of stoichiometric ¹⁷OH₂ (3:1 [Pb(OⁱPr)₂]: ¹⁷OH₂) with in situ formed [Pb(OⁱPr)₂] in refluxing THF. The reaction is completed with the addition of [Zr(OⁱPr)₄(HOⁱPr)]₂ followed by removal of the solvent in vacuo (eq 3). The

$$3 [Pb(O^{i}Pr)_{2}] \xrightarrow{1/2} [Zr(O^{i}Pr)_{4}(HO^{i}Pr)]_{2} \xrightarrow{1/2} Pb_{3}Zr^{17}O(O^{i}Pr)_{8} + 3 HO^{i}Pr \qquad (3)$$

hydrolyzed lead solution contains not one species but is instead a mixture of $Pb_4O(O^iPr)_6$ and $Pb_6O_4(O^iPr)_4$ (eq 4) as determined independently by ¹H NMR. The wax resulting from eq 3 was

$$30[Pb(O^{i}Pr)_{2}] + 10^{17}OH_{2} \rightarrow 6Pb_{4}^{17}O(O^{i}Pr)_{6} + Pb_{6}^{17}O_{4}(O^{i}Pr)_{4}$$
(4)

purified by sublimation. In its ¹H NMR spectrum at -20 °C (Figure 4), both the methine and methyl regions contain sharp multiplets which integrate to 1:4:3. The integration pattern suggests that the structure is that of $Pb_3MO(X)_8$ (III), which has been observed for Pb₃Zr¹⁷O(O^tBu)₈.⁵ Only three chemical environments are found due to residual facile fluxionality (not yet decoalesced) which scrambles the alkoxides of type B, and likewise of type C. Warming to 10 °C gives three peaks (one sharp and two broad) in the methine region while the methyl region only contains two sharp doublets; the smallest and largest peak in the methyl region have coalesced. At 30 °C, the largest and smallest peaks in the methine region are coalesced, and only two broad lines in each of its methine and methyl regions, integrating to 3:5, are observed. Another fluxional process becomes apparent at 70 °C where all peaks have coalesced to give only a single broad line in each of its methine and methyl regions. Warming to 90 °C gives a broad methine signal and a sharp methyl doublet. At 25 °C, three peaks are seen by $^{13}C{^{1}H}$ NMR in the methine region while only two are seen in the methyl region; coupling to Pb is not detected in any of

Figure 4. Stacked plot of 300 MHz ¹H NMR spectra of Pb₃Zr¹⁷O-(OⁱPr)₈ in d_8 -toluene at 90 °C (lower), 30 °C (middle), and -20 °C (upper). The signal at 2.1 ppm is due to residual toluene methyl protons.

the peaks. Five lines detected by ¹⁷O NMR at 65 °C represent the pattern expected for coupling (${}^{1}J_{Pb-O} = 428$ Hz) to three "equivalent" Pb atoms at natural abundance. The relatively sharp lines ($\nu^{1/2} = 93$ Hz) show a fairly symmetrical distribution of electron density around the μ_{4} -O. Two lines integrating to 2:1 are detected at 25 °C by ²⁰⁷Pb NMR, and these lines coalesce, upon raising the temperature to 50 °C, to a single, sharp peak with no observed satellites. The observance of two types of Pb is consistent with **III**, which has two Pb atoms of type a and one of type b.

This species sublimes intact at 125 °C and 10^{-2} Torr to leave a colorless, *crystalline* wax on a 0 °C cold-finger apparatus. Its mass spectrum shows Pb₃Zr¹⁷O(OⁱPr)₇⁺, Pb₃¹⁷O(OⁱPr)₃⁺, Pb-(OⁱPr)⁺, and Pb₂¹⁷O(OⁱPr)⁺.

Pb₃Ti¹⁷O(OⁱPr)₈. Reacting stoichiometric ¹⁷OH₂ with [Pb-(OⁱPr)₂] in refluxing THF, followed by the addition of Ti(OⁱPr)₄ (eq 5), gives Pb₃Ti¹⁷O(OⁱPr)₈. At 25 °C, the ¹H NMR spectrum

$$3 [Pb(O^{i}Pr)_{2}] \xrightarrow{1^{7}OH_{2}} Pb_{3}Ti^{17}O(O^{i}Pr)_{8} + 2 HO^{i}Pr$$
(5)

in C₆D₅CD₃ shows only a sharp methine septet and a sharp methyl doublet (Figure 5). Upon cooling the sample to -70 °C, both regions show two multiplets (integrating to 1:7), and cooling further to -100 °C gives two signals in the methine region (1:7) whereas the methyl region shows three signals (1:4:3). Thus, by ¹H NMR the solution structure is also **III**. Five lines detected by ¹⁷O NMR at 65 °C represent the same pattern found for Pb₃Zr¹⁷O(OⁱPr)₈ where one oxygen couples (¹*J*_{Pb-O} = 442 Hz) to three Pb atoms at natural abundance. The

Figure 5. Stacked plot of 300 MHz ¹H NMR spectra of Pb₃Ti¹⁷O-(OⁱPr)₈ in d_8 -toluene at 25 °C (lower), -70 °C (middle), and -100 °C (upper). The signal at 2.1 ppm is due to residual toluene methyl protons.

relatively sharp lines ($\nu^{1/2} = 68$ Hz) show a symmetrical distribution of electron density around the μ_4 -O. Two lines integrating to 2:1 are detected at 25 °C by ²⁰⁷Pb NMR but do not coalesce, even upon heating to 90 °C. No other species, such as Pb₂Ti₂O(OⁱPr)₁₀⁶ or Pb₄Ti₄O₃(OⁱPr)₁₈, were found as contaminants on the basis of all NMR experiments.

The compound undergoes partial decomposition during sublimation. Approximately equal amounts of Pb₃Ti¹⁷O(OⁱPr)₈ and Ti(OⁱPr)₄ sublimed at 100 °C and 10⁻² Torr to a 0 °C cold-finger apparatus (NMR evidence). Its mass spectrum shows the presence of Pb₃Ti¹⁷O(OⁱPr)₈•+, Pb₃¹⁷O(OⁱPr)₃+, Ti(OⁱPr)₃+, Pb₂¹⁷O(OⁱPr)⁺, and Pb(OⁱPr)⁺.

Mechanistic Studies. We reported earlier that $Pb_4O(O^tBu)_6$ reacts with $Zr(O^tBu)_4$ (eq 6) to give two different heterometallic species at 25 °C in the time of mixing.⁵ We decided to

$$Pb_{4}^{17}O(O^{t}Bu)_{6} + 2Zr(O^{t}Bu)_{4} \xrightarrow{25 \circ C} to luene} Pb_{3}Zr^{17}O(O^{t}Bu)_{8} + PbZr(O^{t}Bu)_{6} (6)$$

investigate the usefulness of this synthetic route using the $O^{i}Pr$ analogues. Reaction according to eq 7 in toluene forms a precipitate, $[Pb(O^{i}Pr)_{2}]$, after brief (3 min) heating to reflux.

$$Pb_{4}^{17}O(O^{i}Pr)_{6} + [Zr(O^{i}Pr)_{4}] \xrightarrow{\Delta} Pb_{3}Zr^{17}O(O^{i}Pr)_{8} + [Pb(O^{i}Pr)_{2}]$$
(7)

Also formed is a species whose NMR spectra are those of independently synthesized $Pb_3Zr^{17}O(O^iPr)_8$. A related reaction, starting with $Pb_6^{17}O_4(O^iPr)_4$, was investigated. We found that eq 8 gave $Pb_3Zr^{17}O(O^iPr)_8$ and $Zr_3^{17}O(O^iPr)_{10}$, which were identifiable by their ¹⁷O NMR chemical shifts and the presence or absence of Pb satellites (263 and 411 ppm, respectively).

$$\frac{Pb_{6}^{17}O_{4}(O^{i}Pr)_{4} + 9[Zr(O^{i}Pr)_{4}]}{2Pb_{3}Zr^{17}O(O^{i}Pr)_{8} + 2Zr_{3}^{17}O(O^{i}Pr)_{10} + [Zr(O^{i}Pr)_{4}]} (8)$$

In an experiment similar to eq 7, we attempted the synthesis of the heterometallic oxo alkoxide $Pb_3Ti^{17}O(O^iPr)_8$ in C_6D_5 -CD₃ using $Ti(O^iPr)_4$ (eq 9). A precipitate of $[Pb(O^iPr)_2]$ is

$$Pb_{4}^{17}O(O^{i}Pr)_{6} + Ti(O^{i}Pr)_{4} \xrightarrow{25 \circ C} Pb_{3}Ti^{17}O(O^{i}Pr)_{8} + [Pb(O^{i}Pr)_{2}] (9)$$

formed immediately in the time of mixing at 25 °C. Also formed is $Pb_3Ti^{17}O(O^iPr)_8$ on the basis of spectra which are the same as those for the species synthesized independently. It

Hydrolytic Synthesis of Lead Oxo Isopropoxides

has been reported that, in a similar reaction (eq 10, which is not balanced), $Pb_2Ti_2O(O^iPr)_{10}$ is formed in a 64% yield at 20 °C in toluene.⁶ We did not find any evidence of the formation

$$Pb_4O(O^{1}Pr)_6 + 4Ti(O^{1}Pr)_4 \rightarrow Pb_2Ti_2O(O^{1}Pr)_{10} \quad (10)$$

of this compound in our reaction (eq 9). We do not believe that the discrepancy is due to a mere difference in stoichiometry (eq 9 vs 10) and thus attempted to synthesize $Pb_2Ti_2^{17}O(O^iPr)_{10}$ using a different synthetic pathway. This involved using a different $[Pb(O^iPr)_2]:^{17}OH_2$ stoichiometry, which was then reacted with $Ti(O^iPr)_4$ (eq 11). The reaction formed both Pb_2 -

$$2 \operatorname{Pb}(O^{i}\operatorname{Pr})_{2}] \xrightarrow{1^{7}OH_{2}} 2 \operatorname{Ti}(O^{i}\operatorname{Pr})_{4} \xrightarrow{2 \operatorname{Ti}(O^{i}\operatorname{Pr})_{4}} \operatorname{Pb}_{2}\operatorname{Ti}_{2}^{1^{7}}O(O^{i}\operatorname{Pr})_{10} + \operatorname{Pb}_{3}\operatorname{Ti}^{1^{7}}O(O^{i}\operatorname{Pr})_{8}$$
(11)

Ti₂¹⁷O(OⁱPr)₁₀ and Pb₃Ti¹⁷O(OⁱPr)₈ after a 4 h reflux in THF. Unreacted Ti(OⁱPr)₄ as well as Ti_aO_b(OⁱPr)_{4a-2b} species were detected by ¹⁷O NMR using chemical shifts previously reported (eq 11 is not balanced).¹⁸ To better understand the reaction, we isolated the solid from a 2:1 [Pb(OⁱPr)₂]:¹⁷OH₂ hydrolysis (cf. eq 11) and identified it as a mixture of Pb₄¹⁷O(OⁱPr)₆ and Pb₆¹⁷O₄(OⁱPr)₄ (¹H NMR assay). Thus, the hydrolysis in the first step of eq 11 proceeds according to eq 12. It is thus no

$$10 [Pb(O^{i}Pr)_{2}] \xrightarrow{S^{1'}OH_{2}} Pb_{4}^{1'}O(O^{i}Pr)_{6} + Pb_{6}^{1'}O_{4}(O^{i}Pr)_{4}$$
(12)

surprise in eq 11 that two products were formed; two reactants compete for $Ti(O^iPr)_4$. According to eq 9, the species that forms from $Pb_4^{17}O(O^iPr)_6$ is $Pb_3Ti^{17}O(O^iPr)_8$. Thus, the formation of $Pb_2Ti_2^{17}O(O^iPr)_{10}$ must derive from $Pb_6^{17}O_4(O^iPr)_4$. Its reaction with $Ti(O^iPr)_4$ was probed (eq 13) at 25 °C in $C_6D_5CD_3$ (not balanced). Here, both heterometallic oxo alkoxide species were

$$\frac{Pb_{6}^{17}O_{4}(O^{i}Pr)_{4} + 9Ti(O^{i}Pr)_{4} + \frac{25 \, ^{\circ}C}{toluene}}{Pb_{2}Ti_{2}^{17}O(O^{i}Pr)_{10} + Pb_{3}Ti^{17}O(O^{i}Pr)_{8}}$$
(13)

formed (NMR evidence) as well as unreacted Ti(OⁱPr)₄ and Ti_aO_b(OⁱPr)_{4a-2b}. Since eq 9 does not make Pb₂Ti₂¹⁷O(OⁱPr)₁₀ but eq 13 does, we suggest that the Pb₄O(OⁱPr)₆, used for the previously reported reaction (eq 10),⁶ was contaminated with Pb₆O₄(OⁱPr)₄. This is further evidenced by the ²⁰⁷Pb NMR chemical shift *reported* for Pb₄O(OⁱPr)₆ (2021 ppm)¹⁹ being almost the same as that of Pb₆O₄(OⁱPr)₄ (2024 ppm)¹⁹ and different from that which we report (see Experimental Section).

The stoichiometric formation of $Pb_3Ti^{17}O(O^iPr)_8$ from $Pb_4O(O^iPr)_6$ and $Pb_6O_4(O^iPr)_4$ (eq 14, which is a more detailed version of eq 5) becomes clearer when one understands the conversion of one Pb/O/OⁱPr species to another by reaction with $[Pb(O^iPr)_2]$, a product in eq 9. This conversion (eq 15) occurs

$$6Pb_{4}^{17}O(O^{i}Pr)_{6} + Pb_{6}^{17}O_{4}(O^{i}Pr)_{4} + 10Ti(O^{i}Pr)_{4} \xrightarrow{\Delta} 10Pb_{3}Ti^{17}O(O^{i}Pr)_{8}$$
(14)

upon refluxing the two reactants, which are poorly soluble in toluene, for 5 min to give a toluene-soluble product. Hence,

the overall reaction of eq 14 is a composite of both eqs 9 and 15. An analogous statement applies to eq 3 (i.e., a composite of eqs 7 and 15).

$$10[Pb(O^{i}Pr)_{2}] + Pb_{6}^{17}O_{4}(O^{i}Pr)_{4} \xrightarrow{\Delta} 4Pb_{4}^{17}O(O^{i}Pr)_{6}$$
(15)

Discussion

Pb₄¹⁷**O**(**O**ⁱ**Pr**)₆ and **Pb**₆¹⁷**O**₄(**O**ⁱ**Pr**)₄. The controlled hydrolysis of [Pb(Oⁱ**Pr**)₂] in refluxing THF using two different [Pb-(Oⁱ**P**r)₂]:¹⁷OH₂ stoichiometries (4:1 or 6:4) gives two different oxo alkoxide species. Both species are formed when the [Pb-(Oⁱ**P**r)₂]:¹⁷OH₂ ratio differs from 4:1 or 6:4, and these species do not interact at 25 °C in C₆D₅CD₃ (NMR evidence). We have observed that, upon adding ¹⁷OH₂ to a hot THF (dilute) solution of [Pb(Oⁱ**P**r)₂], a white precipitate ("Pb_a¹⁷O_b(Oⁱ**P**r)_{2(a-b)}") is initially formed and immediately dissolves by further reaction with [Pb(Oⁱ**P**r)₂]. Stoichiometric [Pb(Oⁱ**P**r)₂] converts Pb₆¹⁷O₄-(Oⁱ**P**r)₄ to Pb₄¹⁷O₀(Oⁱ**P**r)₆ (eq 15) after a 5 min reflux in toluene and confirms that Pb_a¹⁷O_b(Oⁱ**P**r)_{2(a-b)} (here, *a* = 6 and *b* = 4) does indeed react with [Pb(Oⁱ**P**r)₂].

Analysis of Pb4¹⁷O(OⁱPr)₆ using ¹H or ¹³C{¹H} NMR at 25 °C gave deceptively simple spectra which could result⁴ in the mistaken assignment of the solution structure being I. It is only when analysis by variable-temperature and multinuclear NMR is performed that it becomes clear that the structure is different. The ¹H NMR spectrum at -30 °C shows two broad lines integrating to 2:1 in the methine region whereas the methyl region has one broad peak. Three equal-intensity peaks are found in the methyl region at -90 °C. The ²⁰⁷Pb NMR spectrum at -30 °C has three peaks integrating to approximately 1:4:3, and the two outer lines show doublets from coupling. On the basis of satellite patterns and intensities, it is believed that these signals arise from one unique Pb coupling to three equivalent Pb atoms. By 17 O NMR, the -30 °C spectrum shows a broad signal in the baseline and a sharp signal which is flanked by a complex set of satellites showing at least three different coupling constants. The sharpness of the signal ($\nu^{1/2} = 12$ Hz) indicates very high symmetry around the μ_x -O. Judging from the number of different coupling constants, it appears that there is more than one inequivalent Pb atom bound to the oxo. However, it is hard to explain this result when considering the spectra of the other nuclei.

The fragments found in the mass spectrum confirm that "Pb₄¹⁷O(OⁱPr)₆" is present in the gas phase, and no masses higher than that of $Pb_4^{17}O(O^iPr)_5^+$ were detected. While the NMR spectra are inconsistent with **I**, there is a possibility that larger aggregates of $[Pb_4^{17}O(O^iPr)_6]_n$ (i.e., $n \ge 2$) might form. Structures IV and V ($X = O^{i}Pr$), illustrate two possibilities. The most important feature in the formation of these aggregates is the increase in coordination number at Pb. This typically happens as a result of combining a fairly small ligand with a large metal. For example, PbZr(OR)₆ (3-coordinate Pb) forms when O^tBu is used but does not when OⁱPr is used. Instead, two $Pb_xZr_y(O^iPr)_{2x+4y}$ species (where x = 2 or 4 and y = 4 or 2, respectively) are found with Pb being 4-coordinate in both species.²⁰ Since the multinuclear NMR spectra do not all support a single structural type, we cannot judiciously assign a solution structure to this molecule. We have attempted to grow X-ray quality crystals from many solvents, but the compound is too soluble in almost every solvent chosen. The best crystallization solvent is HOⁱPr, but only poor-quality plates are

⁽¹⁸⁾ Day, V. W.; Eberspacher, T. A.; Chen, Y.; Hao, J.; Klemperer, W. G. *Inorg. Chim. Acta* **1995**, *229*, 391.

⁽¹⁹⁾ The chemical shift shown here was calculated with respect to PbMe₄ as a zero reference. The actual reported value for this compound had Pb(NO₃)₂ as an external zero reference (Pb(NO₃)₂ is found at -2961 ppm relative to PbMe₄; see ref 10).

⁽²⁰⁾ Teff, D. J.; Huffman, J. C.; Caulton, K. G. Inorg. Chem. 1996, 35, 2981.

isolated even when using very slow cooling techniques. Some of these crystals were analyzed, but were found to undergo a destructive phase change when cooled below -45 °C. Further, analysis above -45 °C only gave a very poor data set. Sublimation also fails to give high-quality crystals.

In contrast to $Pb_4^{17}O(O^iPr)_6$, multinuclear solution NMR spectra of the further-hydrolyzed species, $Pb_6^{17}O_4(O^iPr)_4$, are wholly consistent with its reported solid-state structure (**II**; OR = O^iPr).¹ When the size of a ligand is decreased, it is commonly found that the coordination number of the metal can increase. Apparently the combination of the coordination geometry around Pb (see **II**) and oxo content provide a satisfactory amount of electron density and prevent further aggregation at Pb. A change in coordination number is not achieved until another metal, particularly one more oxophilic than Pb (i.e., Ti, Zr), is introduced.

Pb₃Zr¹⁷O(OⁱPr)₈ and Pb₃Ti¹⁷O(OⁱPr)₈. These species can be isolated cleanly as the only product upon the reaction of a correct stoichiometric mixture of Pb4¹⁷O(OⁱPr)₆ and Pb6¹⁷O4(OⁱPr)₄ (see eqs 3 and 5) with the appropriate M(OⁱPr)₄ precursor. They are also formed by combining Pb4¹⁷O(OⁱPr)₆ and M(OⁱPr)₄ (eqs 7 and 9). This reaction is apparent by precipitation of [Pb- $(O^{i}Pr)_{2}$]. In the case of Zr, the reactants must be heated to reflux in toluene for a short time (3 min), perhaps due to the aggregation of $[Zr(O^{i}Pr)_{4}]_{x}$ ($x \approx 3$),²¹ which creates coordinative saturation of Zr and hinders its reactivity. For $[Ti(O^{i}Pr)_{4}]_{x}$, which has a lower molecular complexity ($x \approx 1.4$),²¹ the reaction is completed in the time of mixing with a precipitate forming immediately upon combination of the reactants. The two reactions (eqs 7 and 9) cleanly give only two products $(Pb_3M^{17}O(O^iPr)_8 \text{ and } [Pb(O^iPr)_2])$, and no other contaminants (such as Pb₂M₂O(OⁱPr)₁₀ or Pb₄M₄O₃(OⁱPr)₁₈) were observed. The reaction can be envisioned as a simple substitution of one $Pb(O^{i}Pr)_{2}$ unit in **I** with one $M(O^{i}Pr)_{4}$ giving **III**. Substitution of a Pb(OⁱPr)₂ unit in III with one M(OⁱPr)₄ might appear to be the most direct route to the formation of $Pb_2M_2^{17}O(O^iPr)_{10}$ (VI), but it *does not occur* for either Zr or Ti, even in refluxing toluene (eq 16).

$$\frac{Pb_{3}M^{17}O(O^{i}Pr)_{8} + M(O^{i}Pr)_{4} \neq}{III}$$

$$\frac{Pb_{3}M_{2}^{17}O(O^{i}Pr)_{10} + Pb(O^{i}Pr)_{2}}{Pb_{3}M_{2}^{17}O(O^{i}Pr)_{10} + Pb(O^{i}Pr)_{2}}$$
(16)

A common thread to the synthetic transformation described here is the attachment of the electrophile $(Ti^{IV} \text{ or } Zr^{IV})$ to an

oxide of the Pb oxo alkoxide. The $M(O^iPr)_4$ reagent is also a nucleophile, bringing some of its alkoxide ligands into bridging roles to Pb(II); the coordination number of Pb thus rises. In the present case, $Zr(O^iPr)_4$ *displaces* Pb(O^iPr)₂ from the μ_4 -oxo species Pb₄O(O^iPr)₆. Reaction of an electrophile at the μ_3 -oxo ligand in Pb₆O₄(O^iPr)₄ might be expected to be more facile since this oxo is "convex", with outwardly directed Lewis basicity. This is supported by the report of an adduct of formula [Nb-(OEt)₅]₄Pb₆O₄(OEt)₄²² containing a Pb₆O₄(OⁱPr)₄ core with one Nb for each oxide. However, this logic fails, in practice here.

Instead, the $Pb_6O_4(O^iPr)_4$ framework does not remain intact, and the only heterometallic oxo alkoxide product detected is $Pb_3Zr^{17}O(O^iPr)_8$. The reaction of $Pb_6^{17}O_4(O^iPr)_4$ with [Zr-(OⁱPr)₄] is apparent when the former, being sparingly soluble in toluene, is dissolved after heating to reflux for 5 min. The Zr analogue of VI was not observed, possibly as a consequence of the oxophilicity of Zr. That is, it is possible that the formation of **III** is preferred over **VI** when M = Zr since the structure of **III** has a more electron rich environment for M. In both **III** and VI, the coordination geometry at M is the same with M being bound to one μ_4 -O, one μ_3 -X, two μ_2 -X, and two terminal X groups. However, in **III** the electron density of the μ_4 -O is not shared by two oxophilic M centers, as it is in VI, thus providing more electron donation. Further, III has a third electron-rich Pb center, in contrast to VI, which also increases the electron density of **III**. This argument may also explain why III cannot be converted to VI via simple substitution since the oxophilic metals prefer the more electron rich structure over substitution to make VI.

The reaction of $Pb_6^{17}O_4(O^iPr)_4$ and $Ti(O^iPr)_4$ in toluene results in dissolution of the former at 25 °C. In this case (eq 13), the two species $Pb_3Ti^{17}O(O^iPr)_8$ and $Pb_2Ti_2^{17}O(O^iPr)_{10}$ are obtained and a stoichiometric mixture favoring the latter (eq 17) still contains the former (see eq 13) even if attempts are made to drive the reaction by reflux in toluene.

$$Pb_{6}^{17}O_{4}(O^{i}Pr)_{4} + 9Ti(O^{i}Pr)_{4} \not\twoheadrightarrow$$

$$3Pb_{7}Ti_{2}^{17}O(O^{i}Pr)_{10} + Ti_{3}^{17}O(O^{i}Pr)_{10} (17)$$

All evidence found by multinuclear NMR spectrometry suggests that both $Pb_3M^{17}O(O^{i}Pr)_8$ (M = Ti, Zr) species have the same structure (III) in solution. By ¹H NMR at room temperature the two species have very different spectra. The Zr analogue shows some decoalesced peaks while the Ti species has a completely coalesced spectrum. For Zr, cooling to -30 °C shows three decoalesced chemical environments (i.e., some residual fluxionality remains) whereas for Ti this is not achieved until -100 °C. Both species show the same types of fluxionality (i.e., similar mechanisms), but the mechanisms governing the fluxional processes occur at different temperatures. Scheme 1 shows a proposed, stepwise set of mechanisms which achieve the different types of alkoxide scrambling seen at different

⁽²¹⁾ Bradley, D. C.; Mehrotra, R. C.; Gaur, D. P. Metal Alkoxides; Academic: New York, 1978.

⁽²²⁾ Papiernik, R.; Hubert-Pfalzgraf, L. G.; Daran, J.-C.; Jeannin, Y. J. Chem. Soc., Chem. Commun. 1990, 695.

Scheme 1

temperatures. For Zr, the proposed mechanism A causes limited residual scrambling of alkoxides, giving three types (1:4:3). Mechanism B, occurring at 10 °C, causes exchange of the terminal alkoxides. At the same time, mechanism A scrambles the four equatorial alkoxides on Zr. These mechanisms leave the 2:1 (compare Pb:Pb* in Scheme 1 below 50 °C) inequivalence of the three Pb atoms as seen in its 25 °C ²⁰⁷Pb NMR spectrum. A small "precession" of the O–Zr–OⁱPr vector (mechanism C) at 50 °C scrambles the Pb sites. At 70 °C, mechanism D scrambles the alkoxides in the Pb₃(OⁱPr)₃ ring with the equatorial alkoxides on Zr. The combination of mechanisms A, B, C, and D at 90 °C successfully scrambles all of the alkoxides, giving only a methine septet and a methyl doublet (i.e., a completely coalesced spectrum) by ¹H NMR.

For the Ti analogue, the same mechanisms are believed to operate but are observed at different temperatures (Scheme 2). In its -100 °C ¹H NMR spectrum, a residual fluxional mechanism (A) gives only three chemical environments. Unlike the Zr case, the alkoxides in the Pb₃(OⁱPr)₃ ring scramble with the equatorial alkoxides on Ti *via* mechanism D while the axial alkoxide *trans* to the oxo remains unique at -90 °C. Finally, mechanism B begins to exchange the axial alkoxide with the equatorial alkoxides on Ti, resulting in the exchange of all alk-

oxides. The 2:1 (compare Pb:Pb* in Scheme 2) inequivalence of the three Pb atoms is seen even at 90 °C by 207 Pb NMR, and thus mechanism C (see Scheme 1) has a higher activation energy for the Ti species. This, as well as the difference in coalescence temperatures for the two species, is perhaps explained by the difference in the size of M^{IV}. In the Ti species, the exchange of all alkoxides at 25 °C (by ¹H NMR) is a facile process compared to the exchange of alkoxides in Zr analogue. With increased steric congestion (the smaller Ti), it becomes easier for the ligands to migrate (due to a "loose" transition state).

Conclusions

Controlled hydrolysis of polymeric $[Pb(O^iPr)_2]$ with ¹⁷OH₂ in refluxing THF gives the aggregate Pb₄¹⁷O(OⁱPr)₆ or Pb₆¹⁷O₄-(OⁱPr)₄ or gives a mixture of the two when the $[Pb(O^iPr)_2]$: ¹⁷OH₂ ratio differs from 4:1 or 6:4. Stoichiometric $[Pb(O^iPr)_2]$ converts Pb₆¹⁷O₄(OⁱPr)₄ to Pb₄¹⁷O(OⁱPr)₆ after a short (5 min) reflux in toluene. While the structure of Pb₆O₄(OⁱPr)₄ is the same as that of its O'Bu analogue by multinuclear NMR, Pb₄O(OⁱPr)₆ gives too many NMR signals to be consistent with the structure of its O'Bu analogue. We cannot assign a structure due to the complexity of the spectra, but are confident that $[Pb_4O(O^iPr)_6]_n$ building blocks are present on the basis of major

Scheme 2

fragments of this unit (i.e., $Pb_4^{17}O(O^iPr)_5^+$) found in its mass spectrum. We thus suggest that oligomers of this unit are the source of the complex NMR spectra.

The reactions with Pb^{II} oxo alkoxides presented here show how an oxide ion, even one "encapsulated" in a μ_4 site, can bind electropositive Ti or Zr alkoxides to form "globular" (i.e., *closo*, or quasi-spherical) M^{IV}/Pb^{II}/O/OⁱPr aggregates.

This study also allows the following conclusions:

(1) The influence of alkoxide identity on the accessibility of certain precursors (i.e., heterometallic atom ratios) is clarified by these studies. Thus, for $R = {}^{t}Bu$, $Pb{}^{II}{}_{3}M{}^{IV}(OR)_{8}$ is available for M = Zr but not Ti, apparently for reasons of $M{}^{IV}$ size. For the smaller substituent $R = {}^{i}Pr$, $Pb{}_{3}MO(O{}^{i}Pr)_{8}$ is available for both M = Zr and Ti. The size limitation is thus not simply on metal radius, but also on the alkoxide ligand effective size.

(2) These studies reveal unpredictable features of the synthesis of heterometallic species from lead oxo alkoxide sources. Both $M(O^{i}Pr)_{4}$ species (M = Ti and Zr) react with Pb₄O(OⁱPr)₆, in spite of the encapsulated nature of the μ_{4} -oxide in this molecule, to form Ti-oxo or Zr-oxo bonds, but they do so in an unusual *displacement* reaction, with loss of Pb(OⁱPr)₂. The insolubility of this binary alkoxide may enhance the ΔG for such a displacement. It is quite possible that the *mechanism* of this

unusual reaction begins by electrophilic (i.e., M^{IV}) attack on an alkoxide oxygen of $Pb_4O(O^iPr)_6$. However, it is also true that, in the final product $Pb_3ZrO(O^iPr)_8$, Zr provides O^iPr groups to bridge to Pb, so the arriving $Zr(O^iPr)_4$ also behaves as a nucleophile. The coordination number of Pb therefore increases.

(3) In spite of the "exposed" μ_3 and "convex" pyramidal character of the oxide oxygens of Pb₆O₄(OⁱPr)₄, it reacts with M(OⁱPr)₄ not simply to form an adduct analogous to [Nb-(OEt)₅]₄Pb₆O₄(OEt)₄,²² but rather by fragmentation of the Pb₆ unit. The nondetection of Pb(OⁱPr)₂ can be understood (if indeed it is produced) since Pb(OⁱPr)₂ was shown to react readily with Pb₆O₄(OⁱPr)₄ (eq 15), to give Pb₄O(OⁱPr)₆, a species which is itself reactive to give established heterometallic oxo alkoxides. One reason for the complexity of Pb₆O₄(OⁱPr)₄ reactions thus becomes clear. In addition, however, *full oxide abstraction* from Pb^{II} to M^{IV} is observed here, yielding some (μ_3 -O)M^{IV}₃(OⁱPr)₁₀ (M = Ti and Zr). Finally, the Pb₃M¹⁷O(OⁱPr)₁₀ for either Ti or Zr, even in refluxing toluene.

Acknowledgment. This work was supported by the Department of Energy and by a Procter and Gamble fellowship.

IC970709F